Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

PepCompass: Navigating peptide embedding spaces using Riemannian Geometry (2510.01988v1)

Published 2 Oct 2025 in cs.LG

Abstract: Antimicrobial peptide discovery is challenged by the astronomical size of peptide space and the relative scarcity of active peptides. Generative models provide continuous latent "maps" of peptide space, but conventionally ignore decoder-induced geometry and rely on flat Euclidean metrics, rendering exploration and optimization distorted and inefficient. Prior manifold-based remedies assume fixed intrinsic dimensionality, which critically fails in practice for peptide data. Here, we introduce PepCompass, a geometry-aware framework for peptide exploration and optimization. At its core, we define a Union of $\kappa$-Stable Riemannian Manifolds $\mathbb{M}{\kappa}$, a family of decoder-induced manifolds that captures local geometry while ensuring computational stability. We propose two local exploration methods: Second-Order Riemannian Brownian Efficient Sampling, which provides a convergent second-order approximation to Riemannian Brownian motion, and Mutation Enumeration in Tangent Space, which reinterprets tangent directions as discrete amino-acid substitutions. Combining these yields Local Enumeration Bayesian Optimization (LE-BO), an efficient algorithm for local activity optimization. Finally, we introduce Potential-minimizing Geodesic Search (PoGS), which interpolates between prototype embeddings along property-enriched geodesics, biasing discovery toward seeds, i.e. peptides with favorable activity. In-vitro validation confirms the effectiveness of PepCompass: PoGS yields four novel seeds, and subsequent optimization with LE-BO discovers 25 highly active peptides with broad-spectrum activity, including against resistant bacterial strains. These results demonstrate that geometry-informed exploration provides a powerful new paradigm for antimicrobial peptide design.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.