Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

ClustViT: Clustering-based Token Merging for Semantic Segmentation (2510.01948v1)

Published 2 Oct 2025 in cs.CV

Abstract: Vision Transformers can achieve high accuracy and strong generalization across various contexts, but their practical applicability on real-world robotic systems is limited due to their quadratic attention complexity. Recent works have focused on dynamically merging tokens according to the image complexity. Token merging works well for classification but is less suited to dense prediction. We propose ClustViT, where we expand upon the Vision Transformer (ViT) backbone and address semantic segmentation. Within our architecture, a trainable Cluster module merges similar tokens along the network guided by pseudo-clusters from segmentation masks. Subsequently, a Regenerator module restores fine details for downstream heads. Our approach achieves up to 2.18x fewer GFLOPs and 1.64x faster inference on three different datasets, with comparable segmentation accuracy. Our code and models will be made publicly available.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.