Papers
Topics
Authors
Recent
2000 character limit reached

Small is Sufficient: Reducing the World AI Energy Consumption Through Model Selection (2510.01889v1)

Published 2 Oct 2025 in cs.CY and cs.AI

Abstract: The energy consumption and carbon footprint of AI have become critical concerns due to rising costs and environmental impacts. In response, a new trend in green AI is emerging, shifting from the "bigger is better" paradigm, which prioritizes large models, to "small is sufficient", emphasizing energy sobriety through smaller, more efficient models. We explore how the AI community can adopt energy sobriety today by focusing on model selection during inference. Model selection consists of choosing the most appropriate model for a given task, a simple and readily applicable method, unlike approaches requiring new hardware or architectures. Our hypothesis is that, as in many industrial activities, marginal utility gains decrease with increasing model size. Thus, applying model selection can significantly reduce energy consumption while maintaining good utility for AI inference. We conduct a systematic study of AI tasks, analyzing their popularity, model size, and efficiency. We examine how the maturity of different tasks and model adoption patterns impact the achievable energy savings, ranging from 1% to 98% for different tasks. Our estimates indicate that applying model selection could reduce AI energy consumption by 27.8%, saving 31.9 TWh worldwide in 2025 - equivalent to the annual output of five nuclear power reactors.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.