Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compressed Bayesian Tensor Regression (2510.01861v1)

Published 2 Oct 2025 in stat.ME and stat.CO

Abstract: To address the common problem of high dimensionality in tensor regressions, we introduce a generalized tensor random projection method that embeds high-dimensional tensor-valued covariates into low-dimensional subspaces with minimal loss of information about the responses. The method is flexible, allowing for tensor-wise, mode-wise, or combined random projections as special cases. A Bayesian inference framework is provided featuring the use of a hierarchical prior distribution and a low-rank representation of the parameter. Strong theoretical support is provided for the concentration properties of the random projection and posterior consistency of the Bayesian inference. An efficient Gibbs sampler is developed to perform inference on the compressed data. To mitigate the sensitivity introduced by random projections, Bayesian model averaging is employed, with normalising constants estimated using reverse logistic regression. An extensive simulation study is conducted to examine the effects of different tuning parameters. Simulations indicate, and the real data application confirms, that compressed Bayesian tensor regression can achieve better out-of-sample prediction while significantly reducing computational cost compared to standard Bayesian tensor regression.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: