Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A reproducible comparative study of categorical kernels for Gaussian process regression, with new clustering-based nested kernels (2510.01840v1)

Published 2 Oct 2025 in stat.ML and cs.LG

Abstract: Designing categorical kernels is a major challenge for Gaussian process regression with continuous and categorical inputs. Despite previous studies, it is difficult to identify a preferred method, either because the evaluation metrics, the optimization procedure, or the datasets change depending on the study. In particular, reproducible code is rarely available. The aim of this paper is to provide a reproducible comparative study of all existing categorical kernels on many of the test cases investigated so far. We also propose new evaluation metrics inspired by the optimization community, which provide quantitative rankings of the methods across several tasks. From our results on datasets which exhibit a group structure on the levels of categorical inputs, it appears that nested kernels methods clearly outperform all competitors. When the group structure is unknown or when there is no prior knowledge of such a structure, we propose a new clustering-based strategy using target encodings of categorical variables. We show that on a large panel of datasets, which do not necessarily have a known group structure, this estimation strategy still outperforms other approaches while maintaining low computational cost.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: