Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Gradient Shaping Beyond Clipping: A Functional Perspective on Update Magnitude Control (2510.01578v1)

Published 2 Oct 2025 in cs.LG

Abstract: Gradient clipping is widely used to stabilize deep network training, but its formulation as a hard, fixed threshold limits flexibility and ignores gradient distribution dynamics. We propose SPAMP (Statistical Per-layer Adaptive Modulation and Projection), a unified framework that generalizes clipping into smooth, per-layer gradient shaping. SPAMP tracks local gradient statistics, dynamically estimates thresholds, and applies power-based transformations to modulate update magnitudes in a differentiable manner. This perspective recasts clipping and warmup as dual mechanisms for controlling the effective update scale $\eta_t |g_t|$, offering a principled alternative to rigid heuristics. Extensive experiments across image and language tasks demonstrate that SPAMP improves stability, convergence, and robustness over existing methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.