Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lateral Tree-of-Thoughts Surpasses ToT by Incorporating Logically-Consistent, Low-Utility Candidates (2510.01500v1)

Published 1 Oct 2025 in cs.AI

Abstract: Modern deployments increasingly allocate large test-time compute (thousands of tokens or many node expansions) to boost reliability. Under such budgets, standard Tree-of-Thoughts-style search exhibits two pathologies: breadth saturation (additional samples mostly produce near-duplicates, so width stops growing) and depth myopia (noisy short-horizon utilities prune branches whose payoff appears after a few more steps). We propose Lateral Tree-of-Thoughts (LToT), a drop-in controller that separates utility from logical consistency and treats low-utility but consistent candidates as assets rather than waste. The frontier is split into mainlines (high-utility candidates used for exploitation) and laterals (consistent, initially low-utility candidates that receive short, cheap probes before judgment). LToT explores laterals via Lateral Racing with Short-Circuit (LR--SC): a capped successive-halving race that spreads tiny probes across a very wide lateral set, uses width-aware thresholds with repeat-to-confirm, and immediately promotes a branch once its envelope clears the mainline bar; mainlines are kept intentionally narrow so surplus compute is invested where width is cheap. We prove a pseudolinear lateral cost $\Theta(N_0 \log_{\eta} N_0)$ with logarithmically many rungs (initial lateral width $N_0$; culling factor $\eta>1$), in contrast to the exponential growth of uncapped mainlines. Empirical evaluations on benchmark tasks are in preparation and will be added in a future revision. In short, LToT turns large test-time budgets into principled diversity while preserving promotion discipline, mitigating saturation and myopia without inflating compute.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.