Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SoftAdaClip: A Smooth Clipping Strategy for Fair and Private Model Training (2510.01447v1)

Published 1 Oct 2025 in cs.LG

Abstract: Differential privacy (DP) provides strong protection for sensitive data, but often reduces model performance and fairness, especially for underrepresented groups. One major reason is gradient clipping in DP-SGD, which can disproportionately suppress learning signals for minority subpopulations. Although adaptive clipping can enhance utility, it still relies on uniform hard clipping, which may restrict fairness. To address this, we introduce SoftAdaClip, a differentially private training method that replaces hard clipping with a smooth, tanh-based transformation to preserve relative gradient magnitudes while bounding sensitivity. We evaluate SoftAdaClip on various datasets, including MIMIC-III (clinical text), GOSSIS-eICU (structured healthcare), and Adult Income (tabular data). Our results show that SoftAdaClip reduces subgroup disparities by up to 87% compared to DP-SGD and up to 48% compared to Adaptive-DPSGD, and these reductions in subgroup disparities are statistically significant. These findings underscore the importance of integrating smooth transformations with adaptive mechanisms to achieve fair and private model training.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube