Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Stopping vs Best-of-$N$ for Inference Time Optimization (2510.01394v1)

Published 1 Oct 2025 in cs.LG and cs.CL

Abstract: LLM generation often requires balancing output quality against inference cost, especially when using multiple generations. We introduce a new framework for inference-time optimization based on the classical Pandora's Box problem. Viewing each generation as opening a costly "box" with random reward, we develop algorithms that decide when to stop generating without knowing the underlying reward distribution. Our first contribution is a UCB-style Pandora's Box algorithm, which achieves performance that is provably close to Weitzman's algorithm, the optimal strategy when the distribution is known. We further adapt this method to practical LLM settings by addressing reward scaling across prompts via a Bradley-Terry inspired transformation. This leads to an adaptive inference-time optimization method that normalizes rewards and learns stopping thresholds on the fly. Experiments on the AlpacaFarm and HH-RLHF datasets, using multiple LLM-reward model pairs, show that our adaptive strategy can obtain the same performance as non-adaptive Best-of-N sampling while requiring 15-35 percent fewer generations on average. Our results establish a principled bridge between optimal stopping theory and inference-time scaling, providing both theoretical performance bounds and practical efficiency gains for LLM deployment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.