Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning to Play Multi-Follower Bayesian Stackelberg Games (2510.01387v1)

Published 1 Oct 2025 in cs.GT, cs.LG, and econ.TH

Abstract: In a multi-follower Bayesian Stackelberg game, a leader plays a mixed strategy over $L$ actions to which $n\ge 1$ followers, each having one of $K$ possible private types, best respond. The leader's optimal strategy depends on the distribution of the followers' private types. We study an online learning version of this problem: a leader interacts for $T$ rounds with $n$ followers with types sampled from an unknown distribution every round. The leader's goal is to minimize regret, defined as the difference between the cumulative utility of the optimal strategy and that of the actually chosen strategies. We design learning algorithms for the leader under different feedback settings. Under type feedback, where the leader observes the followers' types after each round, we design algorithms that achieve $\mathcal O\big(\sqrt{\min{L\log(nKA T), nK } \cdot T} \big)$ regret for independent type distributions and $\mathcal O\big(\sqrt{\min{L\log(nKA T), Kn } \cdot T} \big)$ regret for general type distributions. Interestingly, those bounds do not grow with $n$ at a polynomial rate. Under action feedback, where the leader only observes the followers' actions, we design algorithms with $\mathcal O( \min{\sqrt{ nL KL A{2L} L T \log T}, Kn\sqrt{ T } \log T } )$ regret. We also provide a lower bound of $\Omega(\sqrt{\min{L, nK}T})$, almost matching the type-feedback upper bounds.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube