Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SimCity: Multi-Agent Urban Development Simulation with Rich Interactions (2510.01297v1)

Published 1 Oct 2025 in cs.MA

Abstract: LLMs open new possibilities for constructing realistic and interpretable macroeconomic simulations. We present SimCity, a multi-agent framework that leverages LLMs to model an interpretable macroeconomic system with heterogeneous agents and rich interactions. Unlike classical equilibrium models that limit heterogeneity for tractability, or traditional agent-based models (ABMs) that rely on hand-crafted decision rules, SimCity enables flexible, adaptive behavior with transparent natural-language reasoning. Within SimCity, four core agent types (households, firms, a central bank, and a government) deliberate and participate in a frictional labor market, a heterogeneous goods market, and a financial market. Furthermore, a Vision-LLM (VLM) determines the geographic placement of new firms and renders a mapped virtual city, allowing us to study both macroeconomic regularities and urban expansion dynamics within a unified environment. To evaluate the framework, we compile a checklist of canonical macroeconomic phenomena, including price elasticity of demand, Engel's Law, Okun's Law, the Phillips Curve, and the Beveridge Curve, and show that SimCity naturally reproduces these empirical patterns while remaining robust across simulation runs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 447 likes.

Upgrade to Pro to view all of the tweets about this paper: