AdaDetectGPT: Adaptive Detection of LLM-Generated Text with Statistical Guarantees (2510.01268v1)
Abstract: We study the problem of determining whether a piece of text has been authored by a human or by a LLM. Existing state of the art logits-based detectors make use of statistics derived from the log-probability of the observed text evaluated using the distribution function of a given source LLM. However, relying solely on log probabilities can be sub-optimal. In response, we introduce AdaDetectGPT -- a novel classifier that adaptively learns a witness function from training data to enhance the performance of logits-based detectors. We provide statistical guarantees on its true positive rate, false positive rate, true negative rate and false negative rate. Extensive numerical studies show AdaDetectGPT nearly uniformly improves the state-of-the-art method in various combination of datasets and LLMs, and the improvement can reach up to 58%. A python implementation of our method is available at https://github.com/Mamba413/AdaDetectGPT.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.