Efficient Uncertainty Estimation for LLM-based Entity Linking in Tabular Data (2510.01251v1)
Abstract: Linking textual values in tabular data to their corresponding entities in a Knowledge Base is a core task across a variety of data integration and enrichment applications. Although LLMs have shown State-of-The-Art performance in Entity Linking (EL) tasks, their deployment in real-world scenarios requires not only accurate predictions but also reliable uncertainty estimates, which require resource-demanding multi-shot inference, posing serious limits to their actual applicability. As a more efficient alternative, we investigate a self-supervised approach for estimating uncertainty from single-shot LLM outputs using token-level features, reducing the need for multiple generations. Evaluation is performed on an EL task on tabular data across multiple LLMs, showing that the resulting uncertainty estimates are highly effective in detecting low-accuracy outputs. This is achieved at a fraction of the computational cost, ultimately supporting a cost-effective integration of uncertainty measures into LLM-based EL workflows. The method offers a practical way to incorporate uncertainty estimation into EL workflows with limited computational overhead.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.