Control the Temperature: Selective Sampling for Diverse and High-Quality LLM Outputs (2510.01218v1)
Abstract: Diversity is an essential metric for evaluating the creativity of outputs generated by LLMs. Temperature-based sampling is a common strategy to increase diversity. However, for tasks that require high precision, e.g., mathematical reasoning, uncontrolled high temperature sampling, e.g., min-$p$ or top-$p$, degrades reasoning quality. We demonstrate that the loss of accuracy is caused by sampling incorrect continuations in sensitive decoding positions. To address this, in this paper, we propose \textbf{selective sampling}, a method that dynamically switches between greedy and high-temperature sampling based on a sampling risk metric. This risk metric estimates the likelihood of output errors when applying high-temperature sampling on the current token position. To predict sampling risk, we train a lightweight classifier on a small subset of verifiable problems. The trained classifier can be integrated with the base LLM with minimal latency overhead. Experiments on mathematical reasoning tasks demonstrate that selective sampling enhances the quality-diversity trade-off, even in high-temperature settings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.