Papers
Topics
Authors
Recent
2000 character limit reached

GRAD: Generative Retrieval-Aligned Demonstration Sampler for Efficient Few-Shot Reasoning (2510.01165v1)

Published 1 Oct 2025 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs achieve strong performance across diverse tasks, but their effectiveness often depends on the quality of the provided context. Retrieval-Augmented Generation (RAG) enriches prompts with external information, but its reliance on static databases constrains adaptability and can result in irrelevant demonstrations. In this work, we propose a Generative Retrieval-Aligned Demonstrator (GRAD), a dynamic demonstration-based approach where an LLM model is trained to generate input-specific concise demonstrations. By tailoring demonstrations to each input, our method offers better contextual support than traditional RAG approaches. We demonstrate the superiority of GRAD under budget constraints, where we limit both the number of tokens used per demonstration and the number of tokens used for the final output. Trained solely on a math dataset, GRAD consistently outperforms strong baselines on Qwen2.5-14B across mathematical reasoning and advanced STEM questions, highlighting GRAD's robust generalization to out-of-distribution (OOD) domains such as physics, chemistry, and computer science. Furthermore, we show that demonstrations generated by trained smaller models can effectively guide larger target models, reducing training costs while maintaining competitive accuracy. Overall, this work introduces a scalable demonstration generator model presenting the first step toward a dynamic few-shot learning paradigm in resource-constrained settings. We release the code used for the project.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.