Papers
Topics
Authors
Recent
2000 character limit reached

Neural Hamilton--Jacobi Characteristic Flows for Optimal Transport (2510.01153v1)

Published 30 Sep 2025 in cs.LG, cs.NA, and math.NA

Abstract: We present a novel framework for solving optimal transport (OT) problems based on the Hamilton--Jacobi (HJ) equation, whose viscosity solution uniquely characterizes the OT map. By leveraging the method of characteristics, we derive closed-form, bidirectional transport maps, thereby eliminating the need for numerical integration. The proposed method adopts a pure minimization framework: a single neural network is trained with a loss function derived from the method of characteristics of the HJ equation. This design guarantees convergence to the optimal map while eliminating adversarial training stages, thereby substantially reducing computational complexity. Furthermore, the framework naturally extends to a wide class of cost functions and supports class-conditional transport. Extensive experiments on diverse datasets demonstrate the accuracy, scalability, and efficiency of the proposed method, establishing it as a principled and versatile tool for OT applications with provable optimality.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.