Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Dynamical system reconstruction from partial observations using stochastic dynamics (2510.01089v1)

Published 1 Oct 2025 in cs.LG and q-bio.QM

Abstract: Learning stochastic models of dynamical systems underlying observed data is of interest in many scientific fields. Here we propose a novel method for this task, based on the framework of variational autoencoders for dynamical systems. The method estimates from the data both the system state trajectories and noise time series. This approach allows to perform multi-step system evolution and supports a teacher forcing strategy, alleviating limitations of autoencoder-based approaches for stochastic systems. We demonstrate the performance of the proposed approach on six test problems, covering simulated and experimental data. We further show the effects of the teacher forcing interval on the nature of the internal dynamics, and compare it to the deterministic models with equivalent architecture.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube