Papers
Topics
Authors
Recent
2000 character limit reached

Random Feature Spiking Neural Networks (2510.01012v1)

Published 1 Oct 2025 in cs.LG and cs.NE

Abstract: Spiking Neural Networks (SNNs) as Machine Learning (ML) models have recently received a lot of attention as a potentially more energy-efficient alternative to conventional Artificial Neural Networks. The non-differentiability and sparsity of the spiking mechanism can make these models very difficult to train with algorithms based on propagating gradients through the spiking non-linearity. We address this problem by adapting the paradigm of Random Feature Methods (RFMs) from Artificial Neural Networks (ANNs) to Spike Response Model (SRM) SNNs. This approach allows training of SNNs without approximation of the spike function gradient. Concretely, we propose a novel data-driven, fast, high-performance, and interpretable algorithm for end-to-end training of SNNs inspired by the SWIM algorithm for RFM-ANNs, which we coin S-SWIM. We provide a thorough theoretical discussion and supplementary numerical experiments showing that S-SWIM can reach high accuracies on time series forecasting as a standalone strategy and serve as an effective initialisation strategy before gradient-based training. Additional ablation studies show that our proposed method performs better than random sampling of network weights.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.