Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

POVQA: Preference-Optimized Video Question Answering with Rationales for Data Efficiency (2510.01009v1)

Published 1 Oct 2025 in cs.CV and cs.MM

Abstract: Video Question Answering (VQA) with Large Vision LLMs (LVLMs) has gained significant traction in research ever since the Flamingo was introduced by Deepmind. Recent advancements in large context/long video question answering have allowed VQA tasks to have context window of 1500+ frames. However, this only leads to 50 seconds of video footage without losing any significant information. We introduce POVQA, a data-efficient pipeline that compresses each second of video into a single temporally pooled image (via motion blur and weighted averaging variants) and then align LVLMs with lightweight supervision. Concretely, we build 1 fps input sources using Blend Blur with Last Frame, Weighted Average, Exponential and Ramp pooling and fine-tune QWEN-2.5-VL 7B with supervised two turn target including reasoning and final answer. We apply Supervised Fine Tuning (SFT) and Direct Preference Optimization (DPO) on our novel dataset ReasonVQA consisting of 12 movies with 239 human annotated question-answer with reasoning prompts. On our ReasonVQA dataset, this method dramatically improves performance over pooled baselines: F1 score improves from 0.212 to 0.543, BLEU-4 from 0.031 to 0.291, and ROUGE-L from 0.196 to 0.528. Rationale quality also significantly increases. Cross-evaluation of SFT + DPO on various pooling functions show that the gains persist regardless of the pooling scheme used at train or test time, indicating strong robustness on summarization of temporal evidence. Similar observations were made on zero-shot in TVQA.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.