Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semantics-Aligned, Curriculum-Driven, and Reasoning-Enhanced Vulnerability Repair Framework (2510.01002v1)

Published 1 Oct 2025 in cs.SE and cs.CR

Abstract: Current learning-based Automated Vulnerability Repair (AVR) approaches, while promising, often fail to generalize effectively in real-world scenarios. Our diagnostic analysis reveals three fundamental weaknesses in state-of-the-art AVR approaches: (1) limited cross-repository generalization, with performance drops on unseen codebases; (2) inability to capture long-range dependencies, causing a performance degradation on complex, multi-hunk repairs; and (3) over-reliance on superficial lexical patterns, leading to significant performance drops on vulnerabilities with minor syntactic variations like variable renaming. To address these limitations, we propose SeCuRepair, a semantics-aligned, curriculum-driven, and reasoning-enhanced framework for vulnerability repair. At its core, SeCuRepair adopts a reason-then-edit paradigm, requiring the model to articulate why and how a vulnerability should be fixed before generating the patch. This explicit reasoning enforces a genuine understanding of repair logic rather than superficial memorization of lexical patterns. SeCuRepair also moves beyond traditional supervised fine-tuning and employs semantics-aware reinforcement learning, rewarding patches for their syntactic and semantic alignment with the oracle patch rather than mere token overlap. Complementing this, a difficulty-aware curriculum progressively trains the model, starting with simple fixes and advancing to complex, multi-hunk coordinated edits. We evaluate SeCuRepair on strict, repository-level splits of BigVul and newly crafted PrimeVul_AVR datasets. SeCuRepair significantly outperforms all baselines, surpassing the best-performing baselines by 34.52% on BigVul and 31.52% on PrimeVul\textsubscript{AVR} in terms of CodeBLEU, respectively. Comprehensive ablation studies further confirm that each component of our framework contributes to its final performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.