Semantics-Aligned, Curriculum-Driven, and Reasoning-Enhanced Vulnerability Repair Framework (2510.01002v1)
Abstract: Current learning-based Automated Vulnerability Repair (AVR) approaches, while promising, often fail to generalize effectively in real-world scenarios. Our diagnostic analysis reveals three fundamental weaknesses in state-of-the-art AVR approaches: (1) limited cross-repository generalization, with performance drops on unseen codebases; (2) inability to capture long-range dependencies, causing a performance degradation on complex, multi-hunk repairs; and (3) over-reliance on superficial lexical patterns, leading to significant performance drops on vulnerabilities with minor syntactic variations like variable renaming. To address these limitations, we propose SeCuRepair, a semantics-aligned, curriculum-driven, and reasoning-enhanced framework for vulnerability repair. At its core, SeCuRepair adopts a reason-then-edit paradigm, requiring the model to articulate why and how a vulnerability should be fixed before generating the patch. This explicit reasoning enforces a genuine understanding of repair logic rather than superficial memorization of lexical patterns. SeCuRepair also moves beyond traditional supervised fine-tuning and employs semantics-aware reinforcement learning, rewarding patches for their syntactic and semantic alignment with the oracle patch rather than mere token overlap. Complementing this, a difficulty-aware curriculum progressively trains the model, starting with simple fixes and advancing to complex, multi-hunk coordinated edits. We evaluate SeCuRepair on strict, repository-level splits of BigVul and newly crafted PrimeVul_AVR datasets. SeCuRepair significantly outperforms all baselines, surpassing the best-performing baselines by 34.52% on BigVul and 31.52% on PrimeVul\textsubscript{AVR} in terms of CodeBLEU, respectively. Comprehensive ablation studies further confirm that each component of our framework contributes to its final performance.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.