Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FlexiCodec: A Dynamic Neural Audio Codec for Low Frame Rates (2510.00981v2)

Published 1 Oct 2025 in cs.SD

Abstract: Neural audio codecs are foundational to speech LLMs. It is expected to have a low frame rate and decoupled semantic and acoustic information. A lower frame rate codec can reduce the computational cost of speech LLMs by shortening the sequence length. Recent studies have developed 12.5Hz low-frame-rate audio codecs, but even lower frame rate codecs remain underexplored. We find that a major challenge for very low frame rate tokens is missing semantic information. This paper introduces FlexiCodec to address this limitation. FlexiCodec improves semantic preservation with a dynamic frame rate approach and introduces a novel architecture featuring an ASR feature-assisted dual stream encoding and Transformer bottlenecks. With dynamic frame rates, it uses less frames at information-sparse regions through adaptively merging semantically similar frames. A dynamic frame rate also allows FlexiCodec to support inference-time controllable frame rates between 3Hz and 12.5Hz. Experiments on 6.25Hz, 8.3Hz and 12.5Hz average frame rates confirm that FlexiCodec excels over baseline systems in semantic information preservation and delivers a high audio reconstruction quality. We also validate the effectiveness of FlexiCodec in LLM-based TTS. Demos are available at: https://flexicodec.github.io

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube