Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bridging Language Gaps: Advances in Cross-Lingual Information Retrieval with Multilingual LLMs (2510.00908v1)

Published 1 Oct 2025 in cs.IR, cs.AI, and cs.CL

Abstract: Cross-lingual information retrieval (CLIR) addresses the challenge of retrieving relevant documents written in languages different from that of the original query. Research in this area has typically framed the task as monolingual retrieval augmented by translation, treating retrieval methods and cross-lingual capabilities in isolation. Both monolingual and cross-lingual retrieval usually follow a pipeline of query expansion, ranking, re-ranking and, increasingly, question answering. Recent advances, however, have shifted from translation-based methods toward embedding-based approaches and leverage multilingual LLMs, for which aligning representations across languages remains a central challenge. The emergence of cross-lingual embeddings and multilingual LLMs has introduced a new paradigm, offering improved retrieval performance and enabling answer generation. This survey provides a comprehensive overview of developments from early translation-based methods to state-of-the-art embedding-driven and generative techniques. It presents a structured account of core CLIR components, evaluation practices, and available resources. Persistent challenges such as data imbalance and linguistic variation are identified, while promising directions are suggested for advancing equitable and effective cross-lingual information retrieval. By situating CLIR within the broader landscape of information retrieval and multilingual language processing, this work not only reviews current capabilities but also outlines future directions for building retrieval systems that are robust, inclusive, and adaptable.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.