Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

OTTER: Open-Tagging via Text-Image Representation for Multi-modal Understanding (2510.00652v1)

Published 1 Oct 2025 in cs.CV

Abstract: We introduce OTTER, a unified open-set multi-label tagging framework that harmonizes the stability of a curated, predefined category set with the adaptability of user-driven open tags. OTTER is built upon a large-scale, hierarchically organized multi-modal dataset, collected from diverse online repositories and annotated through a hybrid pipeline combining automated vision-language labeling with human refinement. By leveraging a multi-head attention architecture, OTTER jointly aligns visual and textual representations with both fixed and open-set label embeddings, enabling dynamic and semantically consistent tagging. OTTER consistently outperforms competitive baselines on two benchmark datasets: it achieves an overall F1 score of 0.81 on Otter and 0.75 on Favorite, surpassing the next-best results by margins of 0.10 and 0.02, respectively. OTTER attains near-perfect performance on open-set labels, with F1 of 0.99 on Otter and 0.97 on Favorite, while maintaining competitive accuracy on predefined labels. These results demonstrate OTTER's effectiveness in bridging closed-set consistency with open-vocabulary flexibility for multi-modal tagging applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube