PromptPilot: Improving Human-AI Collaboration Through LLM-Enhanced Prompt Engineering (2510.00555v1)
Abstract: Effective prompt engineering is critical to realizing the promised productivity gains of LLMs in knowledge-intensive tasks. Yet, many users struggle to craft prompts that yield high-quality outputs, limiting the practical benefits of LLMs. Existing approaches, such as prompt handbooks or automated optimization pipelines, either require substantial effort, expert knowledge, or lack interactive guidance. To address this gap, we design and evaluate PromptPilot, an interactive prompting assistant grounded in four empirically derived design objectives for LLM-enhanced prompt engineering. We conducted a randomized controlled experiment with 80 participants completing three realistic, work-related writing tasks. Participants supported by PromptPilot achieved significantly higher performance (median: 78.3 vs. 61.7; p = .045, d = 0.56), and reported enhanced efficiency, ease-of-use, and autonomy during interaction. These findings empirically validate the effectiveness of our proposed design objectives, establishing LLM-enhanced prompt engineering as a viable technique for improving human-AI collaboration.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.