Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bayesian Neural Networks for Functional ANOVA model (2510.00545v1)

Published 1 Oct 2025 in stat.ML and cs.LG

Abstract: With the increasing demand for interpretability in machine learning, functional ANOVA decomposition has gained renewed attention as a principled tool for breaking down high-dimensional function into low-dimensional components that reveal the contributions of different variable groups. Recently, Tensor Product Neural Network (TPNN) has been developed and applied as basis functions in the functional ANOVA model, referred to as ANOVA-TPNN. A disadvantage of ANOVA-TPNN, however, is that the components to be estimated must be specified in advance, which makes it difficult to incorporate higher-order TPNNs into the functional ANOVA model due to computational and memory constraints. In this work, we propose Bayesian-TPNN, a Bayesian inference procedure for the functional ANOVA model with TPNN basis functions, enabling the detection of higher-order components with reduced computational cost compared to ANOVA-TPNN. We develop an efficient MCMC algorithm and demonstrate that Bayesian-TPNN performs well by analyzing multiple benchmark datasets. Theoretically, we prove that the posterior of Bayesian-TPNN is consistent.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 16 likes.