Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Looking Beyond the Known: Towards a Data Discovery Guided Open-World Object Detection (2510.00303v1)

Published 30 Sep 2025 in cs.CV and cs.LG

Abstract: Open-World Object Detection (OWOD) enriches traditional object detectors by enabling continual discovery and integration of unknown objects via human guidance. However, existing OWOD approaches frequently suffer from semantic confusion between known and unknown classes, alongside catastrophic forgetting, leading to diminished unknown recall and degraded known-class accuracy. To overcome these challenges, we propose Combinatorial Open-World Detection (CROWD), a unified framework reformulating unknown object discovery and adaptation as an interwoven combinatorial (set-based) data-discovery (CROWD-Discover) and representation learning (CROWD-Learn) task. CROWD-Discover strategically mines unknown instances by maximizing Submodular Conditional Gain (SCG) functions, selecting representative examples distinctly dissimilar from known objects. Subsequently, CROWD-Learn employs novel combinatorial objectives that jointly disentangle known and unknown representations while maintaining discriminative coherence among known classes, thus mitigating confusion and forgetting. Extensive evaluations on OWOD benchmarks illustrate that CROWD achieves improvements of 2.83% and 2.05% in known-class accuracy on M-OWODB and S-OWODB, respectively, and nearly 2.4x unknown recall compared to leading baselines.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube