Papers
Topics
Authors
Recent
Search
2000 character limit reached

MOLM: Mixture of LoRA Markers

Published 30 Sep 2025 in cs.CV, cs.CR, and cs.LG | (2510.00293v1)

Abstract: Generative models can generate photorealistic images at scale. This raises urgent concerns about the ability to detect synthetically generated images and attribute these images to specific sources. While watermarking has emerged as a possible solution, existing methods remain fragile to realistic distortions, susceptible to adaptive removal, and expensive to update when the underlying watermarking key changes. We propose a general watermarking framework that formulates the encoding problem as key-dependent perturbation of the parameters of a generative model. Within this framework, we introduce Mixture of LoRA Markers (MOLM), a routing-based instantiation in which binary keys activate lightweight LoRA adapters inside residual and attention blocks. This design avoids key-specific re-training and achieves the desired properties such as imperceptibility, fidelity, verifiability, and robustness. Experiments on Stable Diffusion and FLUX show that MOLM preserves image quality while achieving robust key recovery against distortions, compression and regeneration, averaging attacks, and black-box adversarial attacks on the extractor.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.