BigBang-Proton Technical Report: Next-Word-Prediction is Scientific Multitask Learner (2510.00129v1)
Abstract: We introduce BigBang-Proton, a unified sequence-based architecture for auto-regressive language modeling pretrained on cross-scale, cross-structure, cross-discipline real-world scientific tasks to construct a scientific multi-task learner. BigBang-Proton incorporates three fundamental innovations compared to mainstream general-purpose LLMs: Theory-Experiment Learning paradigm aligns large-scale numerical experimental data with theoretical text corpora; Binary Patch Encoding replaces byte pair encoding(BPE) tokenization; Monte Carlo Attention substitutes traditional transformer architectures. Through next-word-prediction pretraining on cross-discipline scientific datasets of real-world problems mixed with general textual corpus, followed by fine-tuning and inference on downstream tasks, BigBang-Proton demonstrates 100\% accuracy in up to 50-digit arithmetic addition operations, performance on par with leading specialized models in particle physics jet tagging, matching MAE of specialized models in inter-atomic potential simulation, performance comparable to traditional spatiotemporal models in water quality prediction, and benchmark-exceeding performance in genome modeling. These results prove that language-guided scientific computing can match or exceed the performance of task-specific scientific models while maintaining multitask learning capabilities. We further hypothesize to scale the pretraining to the universe scale as a fundamental step toward developing material world foundational model.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.