Papers
Topics
Authors
Recent
2000 character limit reached

Explanation-Driven Counterfactual Testing for Faithfulness in Vision-Language Model Explanations (2510.00047v1)

Published 27 Sep 2025 in cs.CV and cs.AI

Abstract: Vision-LLMs (VLMs) often produce fluent Natural Language Explanations (NLEs) that sound convincing but may not reflect the causal factors driving predictions. This mismatch of plausibility and faithfulness poses technical and governance risks. We introduce Explanation-Driven Counterfactual Testing (EDCT), a fully automated verification procedure for a target VLM that treats the model's own explanation as a falsifiable hypothesis. Given an image-question pair, EDCT: (1) obtains the model's answer and NLE, (2) parses the NLE into testable visual concepts, (3) generates targeted counterfactual edits via generative inpainting, and (4) computes a Counterfactual Consistency Score (CCS) using LLM-assisted analysis of changes in both answers and explanations. Across 120 curated OK-VQA examples and multiple VLMs, EDCT uncovers substantial faithfulness gaps and provides regulator-aligned audit artifacts indicating when cited concepts fail causal tests.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.