Learning to Lead Themselves: Agentic AI in MAS using MARL (2510.00022v1)
Abstract: As autonomous systems move from prototypes to real deployments, the ability of multiple agents to make decentralized, cooperative decisions becomes a core requirement. This paper examines how agentic artificial intelligence, agents that act independently, adaptively and proactively can improve task allocation and coordination in multi-agent systems, with primary emphasis on drone delivery and secondary relevance to warehouse automation. We formulate the problem in a cooperative multi-agent reinforcement learning setting and implement a lightweight multi-agent Proximal Policy Optimization, called IPPO, approach in PyTorch under a centralized-training, decentralized-execution paradigm. Experiments are conducted in PettingZoo environment, where multiple homogeneous drones or agents must self-organize to cover distinct targets without explicit communication.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.