Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Methodological Framework for Quantifying Semantic Test Coverage in RAG Systems (2510.00001v1)

Published 13 Aug 2025 in cs.LG, cs.AI, and cs.SE

Abstract: Reliably determining the performance of Retrieval-Augmented Generation (RAG) systems depends on comprehensive test questions. While a proliferation of evaluation frameworks for LLM-powered applications exists, current practices lack a systematic method to ensure these test sets adequately cover the underlying knowledge base, leaving developers with significant blind spots. To address this, we present a novel, applied methodology to quantify the semantic coverage of RAG test questions against their underlying documents. Our approach leverages existing technologies, including vector embeddings and clustering algorithms, to create a practical framework for validating test comprehensiveness. Our methodology embeds document chunks and test questions into a unified vector space, enabling the calculation of multiple coverage metrics: basic proximity, content-weighted coverage, and multi-topic question coverage. Furthermore, we incorporate outlier detection to filter irrelevant questions, allowing for the refinement of test sets. Experimental evidence from two distinct use cases demonstrates that our framework effectively quantifies test coverage, identifies specific content areas with inadequate representation, and provides concrete recommendations for generating new, high-value test questions. This work provides RAG developers with essential tools to build more robust test suites, thereby improving system reliability and extending to applications such as identifying misaligned documents.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.