Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Grammar of FAIR: A Granular Architecture of Semantic Units for FAIR Semantics, Inspired by Biology and Linguistics (2509.26434v1)

Published 30 Sep 2025 in cs.DB

Abstract: The FAIR Principles aim to make data and knowledge Findable, Accessible, Interoperable, and Reusable, yet current digital infrastructures often lack a unifying semantic framework that bridges human cognition and machine-actionability. In this paper, we introduce the Grammar of FAIR: a granular and modular architecture for FAIR semantics built on the concept of semantic units. Semantic units, comprising atomic statement units and composite compound units, implement the principle of semantic modularisation, decomposing data and knowledge into independently identifiable, semantically meaningful, and machine-actionable units. A central metaphor guiding our approach is the analogy between the hierarchy of level of organisation in biological systems and the hierarchy of levels of organisation in information systems: both are structured by granular building blocks that mediate across multiple perspectives while preserving functional unity. Drawing further inspiration from concept formation and natural language grammar, we show how these building blocks map to FAIR Digitial Objects (FDOs), enabling format-agnostic semantic transitivity from natural language token models to schema-based representations. This dual biological-linguistic analogy provides a semantics-first foundation for evolving cross-ecosystem infrastructures, paving the way for the Internet of FAIR Data and Services (IFDS) and a future of modular, AI-ready, and citation-granular scholarly communication.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 5 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube