Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Orthogonal Learner for Individualized Outcomes in Markov Decision Processes (2509.26429v1)

Published 30 Sep 2025 in stat.ML and cs.LG

Abstract: Predicting individualized potential outcomes in sequential decision-making is central for optimizing therapeutic decisions in personalized medicine (e.g., which dosing sequence to give to a cancer patient). However, predicting potential outcomes over long horizons is notoriously difficult. Existing methods that break the curse of the horizon typically lack strong theoretical guarantees such as orthogonality and quasi-oracle efficiency. In this paper, we revisit the problem of predicting individualized potential outcomes in sequential decision-making (i.e., estimating Q-functions in Markov decision processes with observational data) through a causal inference lens. In particular, we develop a comprehensive theoretical foundation for meta-learners in this setting with a focus on beneficial theoretical properties. As a result, we yield a novel meta-learner called DRQ-learner and establish that it is: (1) doubly robust (i.e., valid inference under the misspecification of one of the nuisances), (2) Neyman-orthogonal (i.e., insensitive to first-order estimation errors in the nuisance functions), and (3) achieves quasi-oracle efficiency (i.e., behaves asymptotically as if the ground-truth nuisance functions were known). Our DRQ-learner is applicable to settings with both discrete and continuous state spaces. Further, our DRQ-learner is flexible and can be used together with arbitrary machine learning models (e.g., neural networks). We validate our theoretical results through numerical experiments, thereby showing that our meta-learner outperforms state-of-the-art baselines.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 33 likes.