Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MC-GNNAS-Dock: Multi-criteria GNN-based Algorithm Selection for Molecular Docking (2509.26377v1)

Published 30 Sep 2025 in cs.AI

Abstract: Molecular docking is a core tool in drug discovery for predicting ligand-target interactions. Despite the availability of diverse search-based and machine learning approaches, no single docking algorithm consistently dominates, as performance varies by context. To overcome this challenge, algorithm selection frameworks such as GNNAS-Dock, built on graph neural networks, have been proposed. This study introduces an enhanced system, MC-GNNAS-Dock, with three key advances. First, a multi-criteria evaluation integrates binding-pose accuracy (RMSD) with validity checks from PoseBusters, offering a more rigorous assessment. Second, architectural refinements by inclusion of residual connections strengthen predictive robustness. Third, rank-aware loss functions are incorporated to sharpen rank learning. Extensive experiments are performed on a curated dataset containing approximately 3200 protein-ligand complexes from PDBBind. MC-GNNAS-Dock demonstrates consistently superior performance, achieving up to 5.4% (3.4%) gains under composite criteria of RMSD below 1\AA{} (2\AA{}) with PoseBuster-validity compared to the single best solver (SBS) Uni-Mol Docking V2.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.