Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Construction of Large Search Spaces for Auto-Tuning (2509.26253v1)

Published 30 Sep 2025 in cs.DC and cs.PF

Abstract: Automatic performance tuning, or auto-tuning, accelerates high-performance codes by exploring vast spaces of code variants. However, due to the large number of possible combinations and complex constraints, constructing these search spaces can be a major bottleneck. Real-world applications have been encountered where the search space construction takes minutes to hours or even days. Current state-of-the-art techniques for search space construction, such as chain-of-trees, lack a formal foundation and only perform adequately on a specific subset of search spaces. We show that search space construction for constraint-based auto-tuning can be reformulated as a Constraint Satisfaction Problem (CSP). Building on this insight with a CSP solver, we develop a runtime parser that translates user-defined constraint functions into solver-optimal expressions, optimize the solver to exploit common structures in auto-tuning constraints, and integrate these and other advances in open-source tools. These contributions substantially improve performance and accessibility while preserving flexibility. We evaluate our approach using a diverse set of benchmarks, demonstrating that our optimized solver reduces construction time by four orders of magnitude versus brute-force enumeration, three orders of magnitude versus an unoptimized CSP solver, and one to two orders of magnitude versus leading auto-tuning frameworks built on chain-of-trees. We thus eliminate a critical scalability barrier for auto-tuning and provide a drop-in solution that enables the exploration of previously unattainable problem scales in auto-tuning and related domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.