Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Single-Loop Gradient Algorithm for Pessimistic Bilevel Optimization via Smooth Approximation (2509.26240v1)

Published 30 Sep 2025 in math.OC

Abstract: Bilevel optimization has garnered significant attention in the machine learning community recently, particularly regarding the development of efficient numerical methods. While substantial progress has been made in developing efficient algorithms for optimistic bilevel optimization, the study of methods for solving Pessimistic Bilevel Optimization (PBO) remains relatively less explored, especially the design of fully first-order, single-loop gradient-based algorithms. This paper aims to bridge this research gap. We first propose a novel smooth approximation to the PBO problem, using penalization and regularization techniques. Building upon this approximation, we then propose SiPBA (Single-loop Pessimistic Bilevel Algorithm), a new gradient-based method specifically designed for PBO which avoids second-order derivative information or inner-loop iterations for subproblem solving. We provide theoretical validation for the proposed smooth approximation scheme and establish theoretical convergence for the algorithm SiPBA. Numerical experiments on synthetic examples and practical applications demonstrate the effectiveness and efficiency of SiPBA.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.