Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Self-supervised learning for phase retrieval (2509.26203v1)

Published 30 Sep 2025 in cs.IR and cs.LG

Abstract: In recent years, deep neural networks have emerged as a solution for inverse imaging problems. These networks are generally trained using pairs of images: one degraded and the other of high quality, the latter being called 'ground truth'. However, in medical and scientific imaging, the lack of fully sampled data limits supervised learning. Recent advances have made it possible to reconstruct images from measurement data alone, eliminating the need for references. However, these methods remain limited to linear problems, excluding non-linear problems such as phase retrieval. We propose a self-supervised method that overcomes this limitation in the case of phase retrieval by using the natural invariance of images to translations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.