Papers
Topics
Authors
Recent
Search
2000 character limit reached

End-to-End Aspect-Guided Review Summarization at Scale

Published 30 Sep 2025 in cs.CL and cs.AI | (2509.26103v1)

Abstract: We present a scalable LLM-based system that combines aspect-based sentiment analysis (ABSA) with guided summarization to generate concise and interpretable product review summaries for the Wayfair platform. Our approach first extracts and consolidates aspect-sentiment pairs from individual reviews, selects the most frequent aspects for each product, and samples representative reviews accordingly. These are used to construct structured prompts that guide the LLM to produce summaries grounded in actual customer feedback. We demonstrate the real-world effectiveness of our system through a large-scale online A/B test. Furthermore, we describe our real-time deployment strategy and release a dataset of 11.8 million anonymized customer reviews covering 92,000 products, including extracted aspects and generated summaries, to support future research in aspect-guided review summarization.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.