Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Runtime Energy Monitoring for RISC-V Soft-Cores (2509.26065v1)

Published 30 Sep 2025 in cs.AR

Abstract: Energy efficiency is one of the major concern in designing advanced computing infrastructures. From single nodes to large-scale systems (data centers), monitoring the energy consumption of the computing system when applications run is a critical task. Designers and application developers often rely on software tools and detailed architectural models to extract meaningful information and determine the system energy consumption. However, when a design space exploration is required, designers may incur in continuous tuning of the models to match with the system under evaluation. To overcome such limitations, we propose a holistic approach to monitor energy consumption at runtime without the need of running complex (micro-)architectural models. Our approach is based on a measurement board coupled with a FPGA-based System-on-Module. The measuring board captures currents and voltages (up to tens measuring points) driving the FPGA and exposes such values through a specific memory region. A running service reads and computes energy consumption statistics without consuming extra resources on the FPGA device. Our approach is also scalable to monitoring of multi-nodes infrastructures (clusters). We aim to leverage this framework to perform experiments in the context of an aeronautical design application; specifically, we will look at optimizing performance and energy consumption of a shallow artificial neural network on RISC-V based soft-cores.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.