Papers
Topics
Authors
Recent
2000 character limit reached

Data-Free Continual Learning of Server Models in Model-Heterogeneous Federated learning (2509.25977v1)

Published 30 Sep 2025 in cs.LG and cs.AI

Abstract: Federated learning (FL) is a distributed learning paradigm across multiple entities while preserving data privacy. However, with the continuous emergence of new data and increasing model diversity, traditional federated learning faces significant challenges, including inherent issues of data heterogeneity, model heterogeneity and catastrophic forgetting, along with new challenge of knowledge misalignment. In this study, we introduce FedDCL, a novel framework designed to enable data-free continual learning of the server model in a model-heterogeneous federated setting. We leverage pre-trained diffusion models to extract lightweight class-specific prototypes, which confer a threefold data-free advantage, enabling: (1) generation of synthetic data for the current task to augment training and counteract non-IID data distributions; (2) exemplar-free generative replay for retaining knowledge from previous tasks; and (3) data-free dynamic knowledge transfer from heterogeneous clients to the server. Experimental results on various datasets demonstrate the effectiveness of FedDCL, showcasing its potential to enhance the generalizability and practical applicability of federated learning in dynamic settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.