Scalable and Robust LLM Unlearning by Correcting Responses with Retrieved Exclusions (2509.25973v1)
Abstract: LLMs trained on web-scale corpora risk memorizing and exposing sensitive information, prompting the need for effective machine unlearning. Prior methods mainly focus on input queries to suppress sensitive outputs, yet this often fails to eliminate the underlying knowledge and limits scalability. To address this, we propose Corrective Unlearning with Retrieved Exclusions (CURE), a novel unlearning framework that verifies model outputs for leakage and revises them into safe responses. Specifically, CURE employs a lightweight corrector that is applied to the original model to verify whether outputs contain target knowledge and to rewrite them if any leakage is detected. To efficiently handle large-scale unlearning requests, CURE retrieves unlearning targets that are relevant to the initial response and provides them as in-context references to the corrector for detection and conditional revision. By leveraging this retrieval augmentation, the corrector can adapt to new unlearning requests without additional training. Extensive evaluations demonstrate that CURE substantially reduces information leakage, even from indirect queries where prior works fall short, while maintaining response quality and general utility. Moreover, it demonstrates robustness under continual unlearning scenarios, making it practical for real-world applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.