Papers
Topics
Authors
Recent
2000 character limit reached

LLaVAShield: Safeguarding Multimodal Multi-Turn Dialogues in Vision-Language Models (2509.25896v1)

Published 30 Sep 2025 in cs.CV

Abstract: As Vision-LLMs (VLMs) move into interactive, multi-turn use, new safety risks arise that single-turn or single-modality moderation misses. In Multimodal Multi-Turn (MMT) dialogues, malicious intent can be spread across turns and images, while context-sensitive replies may still advance harmful content. To address this challenge, we present the first systematic definition and study of MMT dialogue safety. Building on this formulation, we introduce the Multimodal Multi-turn Dialogue Safety (MMDS) dataset. We further develop an automated multimodal multi-turn red-teaming framework based on Monte Carlo Tree Search (MCTS) to generate unsafe multimodal multi-turn dialogues for MMDS. MMDS contains 4,484 annotated multimodal dialogue samples with fine-grained safety ratings, policy dimension labels, and evidence-based rationales for both users and assistants. Leveraging MMDS, we present LLaVAShield, a powerful tool that jointly detects and assesses risk in user inputs and assistant responses. Across comprehensive experiments, LLaVAShield consistently outperforms strong baselines on MMT content moderation tasks and under dynamic policy configurations, establishing new state-of-the-art results. We will publicly release the dataset and model to support future research.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.