Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Marginal Girsanov Reweighting: Stable Variance Reduction via Neural Ratio Estimation (2509.25872v1)

Published 30 Sep 2025 in q-bio.QM and q-bio.BM

Abstract: Recovering unbiased properties from biased or perturbed simulations is a central challenge in rare-event sampling. Classical Girsanov Reweighting (GR) offers a principled solution by yielding exact pathwise probability ratios between perturbed and reference processes. However, the variance of GR weights grows rapidly with time, rendering it impractical for long-horizon reweighting. We introduce Marginal Girsanov Reweighting (MGR), which mitigates variance explosion by marginalizing over intermediate paths, producing stable and scalable weights for long-timescale dynamics. Experiments demonstrate that MGR (i) accurately recovers kinetic properties from umbrella-sampling trajectories in molecular dynamics, and (ii) enables efficient Bayesian parameter inference for stochastic differential equations with temporally sparse observations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 10 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube