HiStyle: Hierarchical Style Embedding Predictor for Text-Prompt-Guided Controllable Speech Synthesis (2509.25842v1)
Abstract: Controllable speech synthesis refers to the precise control of speaking style by manipulating specific prosodic and paralinguistic attributes, such as gender, volume, speech rate, pitch, and pitch fluctuation. With the integration of advanced generative models, particularly LLMs and diffusion models, controllable text-to-speech (TTS) systems have increasingly transitioned from label-based control to natural language description-based control, which is typically implemented by predicting global style embeddings from textual prompts. However, this straightforward prediction overlooks the underlying distribution of the style embeddings, which may hinder the full potential of controllable TTS systems. In this study, we use t-SNE analysis to visualize and analyze the global style embedding distribution of various mainstream TTS systems, revealing a clear hierarchical clustering pattern: embeddings first cluster by timbre and subsequently subdivide into finer clusters based on style attributes. Based on this observation, we propose HiStyle, a two-stage style embedding predictor that hierarchically predicts style embeddings conditioned on textual prompts, and further incorporate contrastive learning to help align the text and audio embedding spaces. Additionally, we propose a style annotation strategy that leverages the complementary strengths of statistical methodologies and human auditory preferences to generate more accurate and perceptually consistent textual prompts for style control. Comprehensive experiments demonstrate that when applied to the base TTS model, HiStyle achieves significantly better style controllability than alternative style embedding predicting approaches while preserving high speech quality in terms of naturalness and intelligibility. Audio samples are available at https://anonymous.4open.science/w/HiStyle-2517/.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.