Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RAE: A Neural Network Dimensionality Reduction Method for Nearest Neighbors Preservation in Vector Search (2509.25839v1)

Published 30 Sep 2025 in cs.IR, cs.AI, and cs.DB

Abstract: While high-dimensional embedding vectors are being increasingly employed in various tasks like Retrieval-Augmented Generation and Recommendation Systems, popular dimensionality reduction (DR) methods such as PCA and UMAP have rarely been adopted for accelerating the retrieval process due to their inability of preserving the nearest neighbor (NN) relationship among vectors. Empowered by neural networks' optimization capability and the bounding effect of Rayleigh quotient, we propose a Regularized Auto-Encoder (RAE) for k-NN preserving dimensionality reduction. RAE constrains the network parameter variation through regularization terms, adjusting singular values to control embedding magnitude changes during reduction, thus preserving k-NN relationships. We provide a rigorous mathematical analysis demonstrating that regularization establishes an upper bound on the norm distortion rate of transformed vectors, thereby offering provable guarantees for k-NN preservation. With modest training overhead, RAE achieves superior k-NN recall compared to existing DR approaches while maintaining fast retrieval efficiency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.