Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distillation of Large Language Models via Concrete Score Matching (2509.25837v1)

Published 30 Sep 2025 in cs.LG and cs.AI

Abstract: LLMs deliver remarkable performance but are costly to deploy, motivating knowledge distillation (KD) for efficient inference. Existing KD objectives typically match student and teacher probabilities via softmax, which blurs valuable logit information. While direct logit distillation (DLD) mitigates softmax smoothing, it fails to account for logit shift invariance, thereby restricting the solution space. We propose Concrete Score Distillation (CSD), a discrete score-matching objective that overcomes both softmax-induced smoothing and restrictions on the optimal solution set. We resolve the training instability and quadratic complexity of discrete score-matching in autoregressive LLMs, and the resulting CSD objective aligns relative logit differences across all vocabulary pairs between student and teacher with flexible weighting. We provide both mode-seeking and mode-covering instances within our framework and evaluate CSD on task-agnostic instruction-following and task-specific distillation using GPT-2-1.5B, OpenLLaMA-7B, and GEMMA-7B-IT. Experiments show that CSD consistently surpasses recent KD objectives, achieves favorable fidelity-diversity trade-offs, and yields complementary gains when combined with on-policy techniques, demonstrating its scalability and effectiveness for LLM distillation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.