Papers
Topics
Authors
Recent
2000 character limit reached

OPPO: Accelerating PPO-based RLHF via Pipeline Overlap (2509.25762v1)

Published 30 Sep 2025 in cs.LG

Abstract: Proximal Policy Optimization (PPO)-based reinforcement learning from human feedback (RLHF) is a widely adopted paradigm for aligning LLMs with human preferences. However, its training pipeline suffers from substantial inefficiencies due to sequential multi-model dependencies (e.g., reward model depends on actor outputs) and long-tail response lengths, where a few long responses straggle the stage completion. We present OPPO, a novel, lightweight, and model-agnostic PPO-based RLHF framework that improves training efficiency by overlapping pipeline execution. OPPO introduces two novel techniques: (1) Intra-step overlap, which streams upstream model outputs (e.g., actor model) in right-sized chunks, enabling the downstream model (e.g., reward) to begin prefill while the upstream continues decoding; and (2) Inter-step overlap, which adaptively overcommits a few prompts and defers long generations to future steps, mitigating tail latency without discarding partial work. OPPO integrates easily with existing PPO implementations with a few lines of code change. Extensive evaluations show that OPPO accelerates PPO-based RLHF training by $1.8 \times-2.8 \times$ and improves GPU utilization by $1.4 \times-2.1 \times$ without compromising training convergence.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.