Papers
Topics
Authors
Recent
2000 character limit reached

Think Less, Label Better: Multi-Stage Domain-Grounded Synthetic Data Generation for Fine-Tuning Large Language Models in Telecommunications (2509.25736v1)

Published 30 Sep 2025 in cs.CL, cs.AI, cs.IT, cs.NI, and math.IT

Abstract: The success of LLMs depends heavily on large-scale, high-quality instruction-following and reinforcement datasets. However, generating such data through human annotation is prohibitively time-consuming particularly for domain-specific tasks like telecom network troubleshooting, where accurate responses require deep technical expertise and contextual understanding. In this paper, we present a fully automated, retrieval-augmented pipeline for generating synthetic question-answer (QA) pairs grounded in structured domain knowledge. Our multi-stage framework integrates a retriever, base generator, and refinement model to synthesize and enhance QA pairs using documents retrieved from a domain-specific knowledge graph. To ensure data quality, we employ customized RAGAS-based scoring to filter low-quality samples, producing a high-quality dataset suitable for reinforcement fine-tuning (RFT). We demonstrate our approach in a real-world telecom scenario focused on radio access network (RAN) troubleshooting. The resulting pipeline generates complex, context-rich troubleshooting solution plans without human intervention. This work offers a scalable solution for building instruction and reinforcement datasets in specialized domains, significantly reducing dependence on manual labeling while maintaining high technical fidelity.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.