Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AIMCoT: Active Information-driven Multimodal Chain-of-Thought for Vision-Language Reasoning (2509.25699v1)

Published 30 Sep 2025 in cs.CV

Abstract: Multimodal Chain-of-Thought (CoT) has emerged as a powerful technique for enhancing the vision-language reasoning with interleaved information. However, existing methods often rely on simplistic heuristics for constructing interleaved CoT, typically depending on attention maps, which our empirical analysis reveals can be unreliable. What's more, the shortcomings of their passive and purposeless selection strategies and their arbitrary triggering mechanisms in capturing the model's cognitive need for information are further amplified. In this paper, we propose \textbf{AIMCoT}, an \textbf{A}ctive \textbf{I}nformation-driven \textbf{M}ulti-modal \textbf{C}hain-\textbf{o}f-\textbf{T}hought framework that addresses these fundamental limitations. AIMCoT introduces three synergistic components: (1) \textbf{Context-enhanced Attention-map Generation (CAG)}, which mitigates the text-vision granularity imbalance, thereby producing more reliable attention maps as a foundation. (2) \textbf{Active Visual Probing (AVP)}, which replaces passive selection with a proactive, goal-oriented strategy grounded in information theory to select image regions that help answer the questions maximally. (3) \textbf{Dynamic Attention-shifting Trigger (DAT)}, which intelligently determines the optimal moments to insert visual information by monitoring the model's text-to-vision attention shifts. Extensive experiments on three challenging benchmarks demonstrate that AIMCoT significantly outperforms state-of-the-art methods across different settings. By actively foraging for information and dynamically structuring its reasoning process, AIMCoT represents a critical step towards more robust, effective, and human-like multimodal reasoning. Our code is available at https://anonymous.4open.science/r/AIMCoT.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.