Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Can VLM Pseudo-Labels Train a Time-Series QA Model That Outperforms the VLM? (2509.25696v1)

Published 30 Sep 2025 in cs.LG, cs.CL, and eess.SP

Abstract: Time-series question answering (TSQA) tasks face significant challenges due to the lack of labeled data. Alternatively, with recent advancements in large-scale models, vision-LLMs (VLMs) have demonstrated the potential to analyze time-series signals in a zero-shot manner. In this paper, we propose a training approach that uses pseudo labels generated by a VLM. Although VLMs can produce incorrect labels, TSQA models can still be effectively trained based on the property that deep neural networks are inherently robust to such noisy labels. Our experimental results demonstrate that TSQA models are not only successfully trained with pseudo labels, but also surpass the performance of the VLM itself by leveraging a large amount of unlabeled data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.